Arsenic mobilization in a seawater inundated acid sulfate soil.

نویسندگان

  • Scott G Johnston
  • Annabelle F Keene
  • Edward D Burton
  • Richard T Bush
  • Leigh A Sullivan
  • Angus McElnea
  • Col R Ahern
  • C Douglas Smith
  • Bernard Powell
  • Rosalie K Hocking
چکیده

Tidal seawater inundation of coastal acid sulfate soils can generate Fe- and S0(4)-reducing conditions in previously oxic-acidic sediments. This creates potential for mobilization of As during the redox transition. We explore the consequences for As by investigating the hydrology, porewater geochemistry, solid-phase speciation, and mineralogical partitioning of As across two tidal fringe toposequences. Seawater inundation induced a tidally controlled redox gradient Maximum porewater As (~400 μg/L) occurred in the shallow (<1 m), intertidal, redox transition zone between Fe-oxidizing and S0(4)-reducing conditions. Primary mechanisms of As mobilization include the reduction of solid-phase As(V) to As(lll), reductive dissolution of As(V)-bearing secondary Fe(lll) minerals and competitive anion desorption. Porewater As concentrations decreased in the zone of contemporary pyrite reformation. Oscillating hydraulic gradients caused by tidal pumping promote upward advection of As and Fe(2+)-enriched porewater in the intertidal zone, leading to accumulation of As(V)-enriched Fe(lll) (hydr)oxides at the oxic sediment-water interface. While this provides a natural reactive-Fe barrier, it does not completely retard the flux of porewater As to overtopping surface waters. Furthermore, the accumulated Fe minerals may be prone to future reductive dissolution. A conceptual model describing As hydro-geochemical coupling across an intertidal fringe is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals

A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elemen...

متن کامل

Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.

The arsenic contamination of aquifers has been linked to the input of dissolved organic matter (DOM). In light of this suggestion, the aim of this study was to quantify chemical effects of DOM on desorption and redox transformations of arsenic bound to synthetic iron oxide and natural samples from different geochemical environments (soils, shallow aquifer, lake sediment). In batch experiments, ...

متن کامل

Arsenic Methylation Dynamics in a Rice Paddy Soil Anaerobic Enrichment Culture.

Methylated arsenic (As) species represent a significant fraction of the As accumulating in rice grains, and there are geographic patterns in the abundance of methylated arsenic in rice that are not understood. The microorganisms driving As biomethylation in paddy environments, and thus the soil conditions conducive to the accumulation of methylated arsenic, are unknown. We tested the hypothesis...

متن کامل

Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.

Recent studies have shown that higher plants are unable to methylate arsenic (As), but it is not known whether methylated As species taken up by plants can be volatilized. Rice (Oryza sativa L.) plants were grown axenically or in a nonsterile soil using a two-chamber system. Arsenic transformation and volatilization were investigated. In the axenic system, uptake of As species into rice roots w...

متن کامل

Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science & technology

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2010